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Abstract
Transformations that involve a Fuchsian-type equation are used to obtain one-
to-one correspondence between the Painlevé I–IV equations and certain second-
order fourth-degree Painlevé-type equations.
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1. Introduction

An ordinary differential equation is said to be of Painlevé type, or to have the Painlevé
property, if the only movable singularities of its solutions are poles. The only first-order
first-degree differential equation that is of Painlevé type is the Riccati equation. First-order
and higher-degree differential equations of Painlevé type have been studied by Briot, Bouquet
and Fuchs (see [1]). Briot and Bouquet have classified all binomial equations of the form

(v′)m + F(z, v) = 0, (1.1)

where F is a rational function of v and locally analytic in z and m is a positive integer, that are
of Painlevé type. Fuchs (see [1]), Ince [1] and Chalkley [9] study Painlevé-type equations of
the form

a1(z, v)(v
′)n + a2(z, v)(v

′)n−1 + · · · + an−1(z, v)v
′ + an(z, v) = 0 (1.2)

where aj (z, v) are assumed to be polynomials in v whose coefficients are analytic functions
of z and a1(z, v) �= 0. The necessary and sufficient conditions for these equations to be of
Painlevé type are given by the Fuchs theorem. The Fuchs theorem shows that, apart from other
conditions, the irreducible form of the first-order and second-degree Painlevé-type equation is

a1(z)(v
′)2 + [a2(z)v

2 + a3(z)v + a4(z)]v
′ + a5(z)v

4 + a6(z)v
3 + a7(z)v

2

+a8(z)v + a9(z) (1.3)

where aj (z), j = 1, 2, . . . , 9 are analytic functions of z and a1(z) �= 0. Let

F(v) := A0v
4 + A1v

3 + A2v
2 + A3v + A4 (1.4)

0305-4470/01/030623+09$30.00 © 2001 IOP Publishing Ltd Printed in the UK 623



624 A Sakka

where

A0 = 4a1a5 − a2
2 A1 = 4a1a6 − 2a2a3

A2 = 4a1a7 − 2a2a4 − a2
3 (1.5)

A3 = 4a1a8 − 2a3a4 A4 = 4a1a9 − a2
4 .

It is known that when F(v) �= 0, there are unique polynomials F1(v) and F2(v) such that

F(v) = A(z)F1(v)[F2(v)]
2 (1.6)

where A(z) is an analytic function and F1(v) has no multiple roots. In [9], it was shown
(theorem 6.2) that equation (1.3) is of Painlevé type if and only if the following conditions
hold:

(i) F1(v) divides G1(v) := (a2v
2 + a3v + a4)

∂F1

∂v
− 2a1

∂F1

∂z
(ii) A0 = 0 and A1 �= 0 imply a2 = 0

(iii) A0 = A1 = A2 = 0 and A3 �= 0 imply a2 = 0.

(1.7)

It was also shown (corollary 6.3) that the special case

G(v) := (a2v
2 + a3v + a4)

∂F

∂v
− 2a1

∂F

∂z
= 0 (1.8)

is of Painlevé type.
The best known second-order first-degree Painlevé-type equations are the so-called

Painlevé equations, PI,PII, . . . ,PVI [1], discovered by Painlevé and his school. They classified
all equations of the form

v′′ = F(z, v, v′) (1.9)

where F is rational in v′ and v and locally analytic in z. They found that there are 50 such
equations. The Painlevé equations, PI,PII, . . . ,PVI, are the only irreducible ones and define
new transcendents. The other 44 equations are either solvable in terms of the known functions
or can be transformed into one of the six equations.

Painlevé-type equations of the second order and degree two or higher have been studied
in [2–4]. In [4], all binomial-type equations of the form

(v′′)m = F(z, v, v′) m � 3 (1.10)

were classified. It turns out that there are two second-order fourth-degree Painlevé-type
equations, labelled as BP-IX and BP-X, of the form of (1.10). BP-IX and BP-X were solved
in terms of elliptic functions or the special case of the second Painlevé transcendent.

Fokas and Ablowitz [8] developed an algorithmic method to investigate the transformation
properties of the Painlevé equations. However, certain second-order second-degree equations
of Painlevé-type equations related to PIII and PVI were also discussed. They used the
transformation

u = v′ + av2 + bv + c

dv2 + ev + f
(1.11)

where a, b, c, d, e, f are functions of z only. The transformation (1.11) is the only
transformation that is linear in v′ and preserves the Painlevé property. The aim was to find
a, b, c, d, e, f such that (1.11) defines a one-to-one invertible map between solutions v of the
Painlevé equations and solutions u of some second-order second-degree equations of Painlevé
type. In [5, 6] the same method was used to derive all second-order second-degree equations
of Painlevé type related to PI–PVI by transformations of the form (1.11).
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As an extension to the method of Fokas and Ablowitz, one may replace (1.11) by a
transformation of the form

u = (v′)2 + (a2v
2 + a1v + a0)v

′ + b4v
4 + b3v

3 + b2v
2 + b1v + b0

(c2v2 + c1v + c0)v′ + d4v4 + d3v3 + d2v2 + d1v + d0
(1.12)

where aj , bk, cj , dk , j = 0, 1, 2, k = 0, 1, 2, 3, 4, are functions of z. Let Aj := cju − aj ,
Bk := dku − bk , j = 0, 1, 2, k = 0, 1, 2, 3, 4. Then the transformation (1.12) preserves the
Painlevé property if the equation

(v′)2 = (A2v
2 + A1v + A0)v

′ + B4v
4 + B3v

3 + B2v
2 + B1v + B0 (1.13)

is of Painlevé type. Comparing this equation with (1.3) one finds

F(v) = −[(4B4 + A2
2)v

4 + 2(2B3 + A1A2)v
3 + (4B2 + A2

1 + 2A0A2)v
2

+2(2B1 + A0A1)v + (4B0 + A2
0)]. (1.14)

Thus equation (1.13) is of Painlevé type if it satisfies the following conditions:

(i) F1(v) divides G1(v) := −(A2v
2 + A1v + A0)

∂F1

∂v
− 2

∂F1

∂z
(ii) 4B4 + A2

2 = 0 and 2B3 + A1A2 �= 0 imply A2 = 0
(iii) 4B4 + A2

2 = 2B3 + A1A2 = 4B2 + A2
1 + 2A0A2 = 0

and 2B1 + A0A1 �= 0 imply A2 = 0

(1.15)

where F1(v) is the unique polynomial defined by equation (1.6). In [7], the
transformation (1.12) is used to obtain one-to-one correspondence between solutions v of
PI–PVI equations and solutions u of certain second-order second-degree equations of Painlevé
type.

In this paper, the transformation (1.12) will be used to obtain one-to-one correspondence
between solutions v of PI–PIV equations and solutions u of certain second-order fourth-degree
equations of Painlevé type. For the sake of simplicity, we use the transformation (1.12) subject
to the constraint

G(v) := −(A2v
2 + A1v + A0)

∂F

∂v
− 2

∂F

∂z
= 0. (1.16)

The procedure is as follows: let v(z) be a solution of one of the Painlevé equations, which has
the general form

v′′ = P2(v, z)(v
′)2 + P1(v, z)v

′ + P0(v, z) (1.17)

and let u(z) be given by the transformation (1.12). The aim is to choose aj , bk, cj and dk such
that u(z) is a solution of a second-order fourth-degree equation of Painlevé type. To be more
specific, differentiating the equation (1.13) and using (1.17) to replace v′′ and (1.13) to replace
(v′)2 one obtains

�v′ + � = 0 (1.18)

where

� = P1 − 2A2v − A1 + 2P2(A2v
2 + A1v + A0)

� = 2P2(B4v
4 + B3v

3 + B2v
2 + B1v + B0) +

1

4

∂F

∂v
+ 2P0 − (A′

2v
2 + A′

1v + A′
0).

(1.19)

Now the aim is to choose aj , bk, cj and dk so that � and � are identically zero and the
constrained G(v) = 0 is reduced to a quadratic equation for v

A(u′, u, z)v2 + B(u′, u, z)v + C(u′, u, z) = 0. (1.20)



626 A Sakka

Then, solving the equation (1.20) for v and substituting into equation (1.13) one obtains second-
order fourth-degree Painlevé-type equations for u. If one reducesG(v) = 0 to a linear equation
for v

A(u′, u, z)v + B(u′, u, z) = 0 (1.21)

then substituting v = −B/A into equation (1.13) gives second-order second-degree Painlevé-
type equations for u.

It turns out that PV and PVI do not have a transformation of this type. In the case of PI,
PII and PIV, there is only one choice of aj , bk , cj and dk that reduces G(v) = 0 to a quadratic
equation for v while in the case of PIII there are two choices. In each case, a second-order
fourth-degree Painlevé-type equation will be obtained. Some of the second-order fourth-degree
Painlevé-type equations will be used to rederive some known discrete Lie-point symmetries
of PII and PIII.

PI and a special case of PIII only have transformations such that G(v) = 0 can be reduced
to a linear equation for v. The case of PI has been considered in [7]. The case of PIII will be
investigated in this paper. Throughout this paper ′ denotes the derivative with respect to z and
˙denotes the derivative with respect to x.

2. Painlevé I

The first Painlevé equation, PI, is

v′′ = 6v2 + z. (2.1)

For PI, equation (1.19) takes the form of

� = −(2A2v + A1)

� = −[(A2
2 + 4B4)v

3 + 1
2 (6B3 + 3A1A2 + 2A′

2 − 24)v2

+ 1
2 (4B2 + 2A0A2 + A2

1 + 2A′
1)v + 1

2 (2B1 + A0A1 + 2A′
0 − 4z)].

(2.2)

To make � = � = 0, one should choose A2 = A1 = B4 = B2 = 0, A0 = −a0, B3 = 4
and B1 = 2z−A′

0. One can always absorb b0 and d0 in u by a proper Möbius transformation.
Hence, without loss of generality, one can set B0 = u. With these choices one obtains

F(v) = −[16v3 + 4(2z − A′
0)v + 4u + A2

0] (2.3)

and hence

G(v) = 8[6A0v
2 + (2 − A′′

0)v + u′ + zA0]. (2.4)

Therefore, if A0 �= 0, the equation G(v) = 0 gives the following quadratic equation for v:

6A0v
2 − (A′′

0 − 2)v + u′ + zA0 = 0. (2.5)

The equation (1.13) becomes

(v′)2 = A0v
′ + 4v3 − (A′

0 − 2z)v + u. (2.6)

Let u(z) = 3
2y(x) + q(x), z = r(x) and A0(z) = e(x), where r(x) = − ∫

dx
e(x)

,

q̇ − r + 1
24e2 (e

2ë + eė2 − 2)2 = 0. Then, following the procedure discussed in the introduction
yields the following second-order fourth-degree Painlevé-type equation for y(x):[
(ÿ)2 − 4

e2
ẏ(6ḟ ẏ + 6y + g)

]2

= 16ẏ

[
(f̈ + 1)ÿ − 2

e2
ẏ(ẏ + 3ḟ 2 + 6f )

]2

(2.7)

where

f (x) = 1
6 (eė + 2r) g(x) = 2(ḟ )3 + 12f ḟ + 4q + e2 − e2(f̈ + 1)2. (2.8)
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Equations (2.5) and (2.6) give one-to-one correspondence between solutions v(z) of PI and
solutions y(x) of (2.7).

If A0 = 0, then G(v) = 0 reduces to a linear equation for v. Solving that equation for
v and substituting in equation (2.6), one obtains a second-order second-degree equation for
u [7].

3. Painlevé II

The second Painlevé equation, PII, is

v′′ = 2v3 + zv + α. (3.1)

For PII, � and � take the form of

� = −(2A2v + A1)

� = −[(A2
2 + 4B4 − 4)v3 + 1

2 (6B3 + 3A1A2 + 2A′
2)v

2

+ 1
2 (4B2 + 2A0A2 + A2

1 + 2A′
1 − 4z)v + 1

2 (2B1 + A0A1 + 2A′
0 − 4α)].

(3.2)

Setting � = � = 0, one obtains A2 = A1 = B3 = 0, A0 = −a0, B4 = 1, B2 = z and
B1 = −(A′

0 − 2α). One can always absorb b0 and d0 in u by a proper Möbius transformation.
Hence, without loss of generality, one can set B0 = u. The equation G(v) = 0 reads

2A0v
3 + v2 + (zAo − A′′

0)v + u′ + αA0 = 0. (3.3)

If A0 �= 0, then in order to reduce (3.3) to a quadratic equation for v one may try to write it as

(v − g)(Av2 + Bv + C) = 0 (3.4)

where g is a function of z only. To achieve this aim, g(z) must be chosen so that

u′ + αA0 + g[g(2gA0 + 1) + zA0 − A′′
0] = 0 (3.5)

which is not possible. Therefore, the only way to reduce (3.3) to a quadratic equation for v is
to set A0 = 0.

Setting A0 = 0, one obtains the following quadratic equation for v:

v2 + u′ = 0. (3.6)

As a result of these choices the equation (1.13) becomes

(v′)2 = v4 + zv2 + 2αv + u. (3.7)

If α �= 0, then the equations (3.6) and (3.7) give one-to-one correspondence between solutions
v(z) of PII and solutions u(z) of the following second-order fourth-degree Painlevé-type
equation:

[(u′′)2 + 4(u′)3 − 4z(u′)2 + 4uu′]2 = −64α2(u′)3. (3.8)

One can easily note that α and −α give the same value of u, that is, u(z;α) = u(z; −α).
Thus, using equation (3.6), one obtains [v(z;α)]2 = [v(z; −α)]2. Since v(z;α) �= v(z; −α),
one obtains the well known discrete Lie-point symmetry of PII v(z;α) = −v(z; −α) [8].

When α = 0, the equation (3.8) reduces to the following second-order second-degree
Painlevé-type equation:

(u′′)2 + 4(u′)3 − 4z(u′)2 + 4uu′ = 0. (3.9)

The change of variable z = − 1
3√2
x, u(z) = − 3

√
2y(x) transforms equation (3.9) into the special

case (λ1 = 0) of the equation

(ÿ)2 = −4(ẏ)3 − 2ẏ(xẏ − y) + λ1. (3.10)
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In [3], equation (3.10) was labelled as SD-I.d and solved in terms of the PII equation

ẅ = 2w3 + xw + ε
(√

2λ1 − 1
2

)
(3.11)

where ε = ±1. Equation (3.10) and its solution were rederived in [7]. The relation between
solutions u(z) of equation (3.9) and solutions y(x) of equation (3.10), with λ1 = 0, implies
the following one-to-one correspondence between solutions v(z) of the PII equation (3.1) with
α = 0 and solutions w(x) of the PII equation (3.11) with λ1 = 0:

w = − εv′
3
√

2v
εẇ + w2 + 1

2x = 3
√

2v2 (3.12)

provided that v �= 0. The Bäcklund transformation (3.12) was first obtained by Gambier [10].
When v = 0, one obtains the known fact [8] that the PII equation (3.11) with λ1 = 0 has a
one-parameter family of solutions characterized by

εẇ + w2 + 1
2x = 0. (3.13)

4. Painlevé III

Let v(z) be a solution of the PIII equation

v′′ = 1

v
(v′)2 − 1

z
v′ + γ v3 +

1

z
(αv2 + β) +

δ

v
. (4.1)

Then � and � take the following forms:

� = 1

v

[(
A1 − 2

z

)
v + 2A0

]

� = 1

v

[
(2γ − A2

2 − 2B4)v
4 +

(
2α

z
− B3 − 3

2
A1A2 − A′

2

)
v3

−
(
A′

1 +
1

2
A2

1 + A0A2

)
v2 +

(
B1 − 1

2
A0A1 − A′

0 +
2β

z

)
v + 2B0 + 2δ

]
.

(4.2)

Setting � = � = 0, one obtains A0 = 0, A1 = 2
z
, A2 = −a2, B4 = γ − 1

2A
2
2,

B3 = 2α
z

− 3
z
A2 − A′

2, B1 = − 2β
z

and B0 = −δ. Without loss of generality one may set
B2 = u. In this case, the equation G(v) = 0 gives

A2(4B4 + A2
2)v

3 +

[
2B ′

4 + A2A
′
2 + 3A2

(
B3 +

1

z
A2

)
+

2

z
(4B4 + A2

2)

]
v2

+2

[
B ′

3 +
3

z
A2 +

1

z
A′

2 +
3

z
B3 + 2A2u

]
v + 2

[
u′ +

2

z
u − β

z
A2

]
= 0. (4.3)

Now, the aim is to reduce equation (4.3) to a quadratic equation for v. This can be achieved
only by setting the coefficient of v3 equal to zero. There are two cases: (1) A2 = 0 and
(2) A2

2 + 4B4 = 0.

Case 1. A2 = 0. If γ �= 0, then the quadratic equation for v reads

γ zv2 + αv + 1
4 (z

2u′ + 2zu) = 0 (4.4)

and the equation (1.13) reads

(v′)2 = 2

z
vv′ + γ v4 +

2α

z
v3 + uv2 − 2β

z
v − δ. (4.5)
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Let z = e−x , u(z) = 1
γ

e2x[y(x) − α2x]. Then there is a one-to-one correspondence, given
by (4.4) and (4.5), between solutions v(z) of the PIII equation and y(x) of the following
second-order fourth-degree equation of Painlevé type:{
(ÿ)2 + 8ẏÿ − 1

γ
ẏ[(ẏ)2 + 2(2y − f )ẏ + (4α2y + g)]

}2

= 64ẏ

[
αÿ − 1

γ
ẏ(αy + h)

]2

(4.6)

where

f (x) = α2(2x + 3) + 6γ
g(x) = 16αβγ 2e−2x − 16δγ 3e−4x − α4(4x + 3) − 12α2γ

h(x) = 2βγ 2e−2x − α3(x + 3) − 3αγ.
(4.7)

If one replaces α by −α and β by −β, the equation (4.6) does not change. This means
y(x;α, β, γ, δ) = y(x; −α,−β, γ, δ) and hence u(z;α, β, γ, δ) = u(z; −α,−β, γ, δ). Let
v = v(z;α, β, γ, δ) and let v̄ = v(z; −α,−β, γ, δ). Then equation (4.4) implies that

(v + v̄)[γ z(v − v̄) + α] = 0. (4.8)

Therefore, one rederives the well known discrete Lie-point symmetry of PIII v(z;α, β, γ, δ) =
−v(z; −α,−β, γ, δ) [8].

Case 2. A2
2 + 4B4 = 0. In this case, the quadratic equation and (1.13) become

6νµzv2 + 2(νz2u + 2µ + ν)v + z2u′ + 2zu − 2βνz = 0 (4.9)

and

(v′)2 = 2

z
v(νzv + 1)v′ − γ v4 +

2(µ − ν)

z
v3 + uv2 − 2β

z
v − δ (4.10)

respectively, where ν = √
γ and µ = α − 2ν. Suppose that ν �= 0 and let z = r(x),

u = 3µ
r
(py + q) − 2µ+ν

νr2 , where r(x) = − 2
ν

∫
dx
p(x)

, ṗ+2q− 2
νr

= 0 andpq̇+q2− 2
νr
q+ 4β

3µ = 0.
Then one obtains the following second-order fourth-degree Painlevé-type equation for y(x):{
(ÿ + 2yẏ)2 − 8(y + e)(ẏ + y2)(ÿ + 2yẏ) + 16

(
y2 + 2ey + e2 +

2µ

ν3r2p2

)
(ẏ + y2)2

+16(y4 + g3y
3 + g2y

2 + g1y + g0)(ẏ + y2)

}2

= 16(ẏ + y2)

{
(2y2 + 2ey + f )(ÿ + 2yẏ)

−4

(
µ

ν2rp
ẏ + 2y3 + h2y

2 + h1y + h0

)
(ẏ + y2)

}2

(4.11)

where

e = 2

p

(
q − 1

νr

)
f = 1

2
e2 +

2

p2

(
2β

3µ
− 1

ν2r2

)
g3 = 2

(
e − µ

ν2rp

)

g2 = e2 + f − µ

ν2rp2

(
3pe +

4

νr

)
g1 = ef − µq

ν2rp3

(
3pe +

2

νr
+

4β

µq

)

g0 = 1

4
f 2 − 1

ν2rp4
(µpeq2 + 4βq − δr) h2 = 2

(
2e − µ

ν2rp

)

h1 = 2e2 + f − µ

ν2rp2

(
3pe +

2

νr

)
h0 = ef − µq

2ν2rp3

(
3pe − 2

νr
+

8β

µq

)
.

(4.12)

The one-to-one correspondence between v(z) and y(x) is given by (4.9) and (4.10).
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Now we consider the case γ = ν = 0. In such a case, equations (4.4) and (4.9) give the
following equation for v:

4αv + z2u + 2zu = 0. (4.13)

The equations (4.5) and (4.10) give the equation

(zv′ − v)2 = 2αzv3 + (z2u + 1)v2 − 2βzv − δz2. (4.14)

Suppose that α �= 0 and let z2u = 16y−1, z2 = x. Then solving (4.13) for v and substituting
in (4.14), one obtains the following second-order second-degree equation for y(x):

x2ÿ2 = −4ẏ2(xẏ − y) +
αβ

16
ẏ − α2δ

256
. (4.15)

Equation (4.15) is a special case (λ1 = λ2 = 0) of the equation

x2ÿ2 = −4ẏ2(xẏ − y) + λ1(xẏ − y)2 + λ2(xẏ − y) + λ3ẏ + λ4. (4.16)

The equation (4.16) was first obtained in [3] and labelled as SDI.b and was rederived in [7].
When γ = α = 0, equations (4.4), (4.9) and (4.5), (4.10) give

z2u′ + 2zu = 0 (4.17)

and

(zv′ − v)2 = (z2u + 1)v2 − 2βzv − δz2 (4.18)

respectively. Equation (4.17) implies z2u = k where k is the integration constant. Hence,
(4.18) reduces to the following first-order second-degree equation:

(zv′ − v)2 = (k + 1)v2 − 2βzv − δz2. (4.19)

Therefore, if α = γ = 0, PIII admits the first integral (4.19). The transformations

v = −λw − λ − β

w′ w = z

v
(v′ + λ) (4.20)

where λ2 = −δ, give one-to-one correspondence between solutions v(z) of PIII and solutions
w(z) of the following Riccati equation:

2zw′ + w2 − 2w − k = 0. (4.21)

The relation between PIII with α = γ = 0 and equation (4.21) was first given in [8].

5. Painlevé IV

Let v(z) be a solution of the PIV equation

v′′ = 1

2v
(v′)2 +

3

2
v3 + 4zv2 + 2(z2 − α)v +

β

v
. (5.1)

For PIV, � and � have the following forms:

� = −1

v
(A2v − A0)

� = 1

v

[
(3 − A2

2 − 3B4)v
4 +

(
8z − 2B3 − 3

2
A1A2 − A′

2

)
v3

+(4z2 − 4α − A′
1 − B2 − 1

2A
2
1 − A0A2)v

2

−( 1
2A0A1 + A′

0)v + B0 + 2β

]
.

(5.2)
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Setting � = � = 0, one obtains A0 = A2 = 0, A1 = −a1(z), B4 = 1, B3 = 4z,
B2 = 4(z2 − α)−A′

1 − 1
2A

2
1 and B0 = −2β. Without loss of generality one may set B1 = u.

In this case, the equation G(v) = 0 gives

8A1v
3 + 8(3zA1 + 2)v2 + [4B ′

2 + 2A1A
′
1 + A1(4B2 + A2

1)]v + 4u′ + 2A1u = 0. (5.3)

Thus, one should set A1 = 0 to obtain the following quadratic equation for v:

v2 + 2zv + 1
4u

′ = 0. (5.4)

The equation (1.13) takes the form

(v′)2 = v4 + 4zv3 + 4(z2 − α)v2 + uv − 2β. (5.5)

Let u = −y + 4
3z

3. Then y(z) satisfies the following second-order fourth-degree equation of
Painlevé type:

{(y ′′)2 − y ′[(y ′)2 − 8(z2 + 2α)y ′ + 16zy − f ]}2 = 64y ′{y ′′ − y ′(y − 4
3z

3 − 8αz)}2 (5.6)

where f (z) = 16( 1
3z

4 + 4αz2 + 2β + 1).
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[7] Muğan U and Sakka A 1999 J. Math. Phys. 44 3569
[8] Fokas A S and Ablowitz M J 1982 J. Math. Phys. 23 2033
[9] Chalkley R 1987 J. Diff. Eqns 68 72

[10] Gambier B 1910 Acta Math. 33 1


